Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Rachid Ouarsal,<sup>a</sup> Aziz Alaoui Tahiri,<sup>a</sup> Brahim El Bali,<sup>a</sup> Mohammed Lachkar<sup>a</sup> and William T. A. Harrison<sup>b</sup>\*

<sup>a</sup>Laboratoire des Matériaux et Protection de l'Environnement, Département de Chimie, Faculté des Sciences Dhar Mehraz, B.P.1796 Atlas 30003, Fès, Morocco, and <sup>b</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

#### Key indicators

Single-crystal X-ray study T = 298 KMean  $\sigma$ (P–O) = 0.002 Å R factor = 0.025 wR factor = 0.057 Data-to-parameter ratio = 26.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 23 January 2002 Accepted 4 February 2002

Online 8 February 2002

# Sodium zinc tris(dihydrogenphosphite) hydrate, $NaZn(H_2PO_3)_3 \cdot H_2O$

NaZn(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O contains zigzag chains of edge-sharing alternating NaO<sub>6</sub> [ $d_{av}$ (Na-O) = 2.452 (2) Å] and ZnO<sub>6</sub> [ $d_{av}$ (Zn-O) = 2.104 (2) Å] octahedra, crosslinked by H<sub>2</sub>PO<sub>3</sub> pseudo-pyramids [ $d_{av}$ (P-O<sub>Zn</sub>) = 1.501 (2) Å and  $d_{av}$ (P-OH) = 1.572 (2) Å]. It is isostructural with NaM(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O (M= Mn, Co).

# Comment

Only a few mixed-metal phosphites containing sodium and a transition metal have been reported, including the isostructural NaCo(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O (Kratochvíl *et al.*, 1982) and NaMn(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O (Chmelíková *et al.*, 1986). Here, we report the synthesis and structure of the third member of this family, NaZn(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O, as part of our ongoing investigations of Na–M–H<sub>3</sub>PO<sub>3</sub> (M = divalent transition metal) systems.

The zinc cation is octahedrally coordinated with  $d_{av}(Zn-O) = 2.104$  (2) Å. Five of the O atoms bridge to phosphite P atoms ( $\theta_{av} = 133.7^{\circ}$ ) and the remaining atom (O6) is part of a water molecule. A similar average Zn–O distance of 2.115 Å is found in in Zn(H<sub>2</sub>PO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O (Ortiz-Avila *et al.*, 1989).

The three unique  $P^{III}$  atoms are coordinated by three O atoms in pseudo-pyramidal geometry, with a terminal H atom [d(P-H) = 1.32 Å] occupying the fourth tetrahedral vertex. P1 and P3 possess one P-OH vertex and make two P-O-



© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

# inorganic papers



### Figure 2

Polyhedral representation down [100] of the unit-cell packing in NaZn(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O [colour key: ZnO<sub>6</sub> octahedra red, NaO<sub>6</sub> octahedra blue, phosphite tetrahedra ( $3 \times P-O$  and  $1 \times P-H$  vertices) yellow].

Zn bridges; P2 has one terminal P=O9 bond, one P-OH bond, and makes one P-O-Zn link. The average P-O<sub>Zn</sub> and P-OH bond lengths are 1.501 (2) and 1.572 (2) Å, respectively. These P-O and P-OH distances are similar to their equivalent values in NaMn(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O and NaCo(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O (1.500 and 1.574 Å, and 1.496 and 1.567 Å, respectively).

The Na1 coordination can be described as distorted octahedral with one Na–O vertex significantly longer than the other five. The bond-valence sum (Brown, 1996) for sodium of 1.15 (ideal value = 1.00) indicates that its valence is satisfied by this coordination. The average Na–O separation of 2.452 (2) Å is similar to that found in NaMn(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O (2.442 Å) and NaCo(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O (2.443 Å).

The polyhedral connectivity in NaZn(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O consists of zigzag chains of alternating ZnO<sub>6</sub> and NaO<sub>6</sub> octahedra, sharing edges by way of O1···O5 and O4···O6 pairs. The chains propagate along [100]. The octahedral chains are crosslinked by the phosphite moieties: the P2-centred group links adjacent chains in the *c* direction, and the P3 group fuses the chains in the *b* direction. Various P–OH···O and O<sub>w</sub>H···O (*w* is water) hydrogen bonds also stabilize the structure, as described previously (Chmelíková *et al.*, 1986).

# Experimental

Solutions I and II were made up as follows. I: NaOH (2.5 mmol) +  $H_3PO_3$  (2.5 mmol) in 10 ml water; II: ZnO (2.5 mmol) +  $H_3PO_3$ 

(1.5 mmol) in 10 ml water. They were mixed in a 1:1.5 ratio, stirred for 6 h, and the resulting clear solution was left to stand at room temperature. After two weeks, colourless lozenge-shaped crystals of the title compound were recovered by filtration and washing with 80% ethanol solution.

Mo  $K\alpha$  radiation

reflections

 $\theta = 2.7 - 32.5^{\circ}$  $\mu = 3.04 \text{ mm}^{-1}$ 

T = 298 (2) K

 $R_{\rm int} = 0.044$ 

 $\theta_{\rm max} = 32.5^\circ$ 

 $h=-7\rightarrow13$ 

 $\begin{array}{l} k=-18 \rightarrow 22 \\ l=-22 \rightarrow 21 \end{array}$ 

 $(\Delta/\sigma)_{\text{max}} = 0.001$  $\Delta\rho_{\text{max}} = 0.42 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ 

Cut chunk, colourless

 $0.23 \times 0.20 \times 0.13 \text{ mm}$ 

3585 independent reflections 2756 reflections with  $I > 2\sigma(I)$ 

 $w = 1/[\sigma^2(F_o^2) + (0.0263P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$ 

Extinction correction: SHELXL97

Extinction coefficient: 0.00347 (18)

Cell parameters from 5338

Crystal data

NaZn(H<sub>2</sub>PO<sub>3</sub>)<sub>3</sub>·H<sub>2</sub>O  $M_r = 349.33$ Orthorhombic, *Pbca*  a = 9.0609 (4) Å b = 14.7671 (6) Å c = 14.8106 (6) Å V = 1981.71 (14) Å<sup>3</sup> Z = 8 $D_x = 2.342$  Mg m<sup>-3</sup>

#### Data collection

Bruker SMART 1000 CCD diffractometer  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999)  $T_{\min} = 0.541, T_{\max} = 0.693$ 16277 measured reflections

### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.025$   $wR(F^2) = 0.057$  S = 0.943585 reflections 137 parameters H-atom parameters constrained

#### Table 1

Selected geometric parameters (Å, °).

| Na1–O5 <sup>i</sup>      | 2.3203 (14) | Zn1-O6                  | 2.1810 (13) |
|--------------------------|-------------|-------------------------|-------------|
| Na1–O1 <sup>i</sup>      | 2.3257 (14) | P1-O1                   | 1.4987 (13) |
| Na1–O9 <sup>ii</sup>     | 2.3292 (15) | $P1-O5^{i}$             | 1.4990 (13) |
| Na1-O4                   | 2.4165 (14) | P1-O7                   | 1.5780 (14) |
| Na1-O6                   | 2.4733 (16) | P2-O9                   | 1.4935 (13) |
| Na1-O10 <sup>iii</sup>   | 2.8473 (18) | P2-O2                   | 1.5075 (13) |
| Zn1-O5                   | 2.0618 (12) | P2-O8                   | 1.5659 (14) |
| Zn1-O4                   | 2.0643 (12) | P3-O4                   | 1.4985 (13) |
| Zn1-O3                   | 2.0743 (12) | P3–O3 <sup>iv</sup>     | 1.5035 (13) |
| Zn1-O1                   | 2.0942 (12) | P3-O10                  | 1.5708 (14) |
| Zn1-O2                   | 2.1503 (13) |                         |             |
| P1-O1-Zn1                | 127.97 (7)  | P3-O4-Zn1               | 132.91 (8)  |
| P2-O2-Zn1                | 137.98 (8)  | P1 <sup>v</sup> -O5-Zn1 | 137.11 (8)  |
| P3 <sup>iv</sup> -O3-Zn1 | 132.32 (8)  |                         |             |
|                          |             |                         |             |

Symmetry codes: (i)  $x - \frac{1}{2}, \frac{1}{2} - y, 1 - z$ ; (ii)  $x - \frac{1}{2}, y, \frac{1}{2} - z$ ; (iii) -x, -y, 1 - z; (iv) 1 - x, -y, 1 - z; (v)  $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z$ .

| Table 2          |          |     |     |
|------------------|----------|-----|-----|
| Hydrogen-bonding | geometry | (Å, | °). |

| $D - H \cdots A$                                                                                                                                                  | D-H  | $H \cdots A$ | $D \cdots A$ | $D - H \cdots A$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|--------------|------------------|
| $\begin{array}{c} 06 - H6A \cdots 07^{i} \\ 06 - H6B \cdots 010^{ii} \\ 07 - H7 \cdots 02^{iii} \\ 08 - H8 \cdots 03^{iv} \\ 010 - H10 \cdots 09^{v} \end{array}$ | 0.85 | 1.93         | 2.7622 (19)  | 163              |
|                                                                                                                                                                   | 0.78 | 2.23         | 3.0034 (19)  | 171              |
|                                                                                                                                                                   | 0.93 | 1.66         | 2.5875 (18)  | 170              |
|                                                                                                                                                                   | 0.88 | 1.83         | 2.696 (2)    | 170              |
|                                                                                                                                                                   | 0.89 | 1.69         | 2.5771 (19)  | 169              |

Symmetry codes: (i)  $x, \frac{1}{2} - y, z - \frac{1}{2}$ ; (ii)  $\frac{1}{2} - x, \frac{1}{2} + y, z$ ; (iii)  $x - \frac{1}{2}, \frac{1}{2} - y, 1 - z$ ; (iv) 1 - x, -y, 1 - z; (v)  $x - \frac{1}{2}, y, \frac{1}{2} - z$ .

Data collection: *SMART* (Bruker, 1999); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1999); program(s) used to solve

structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

# References

Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.

- Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chmelíková, R., Loub, J. & Petricek, V. (1986). Acta Cryst. C42, 1281–1283. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565–565.
- Kratochvíl, B., Podlahova, J., Habibpur, S., Petricek, V. & Maly, K. (1982). Acta Cryst. B38, 2436–2438.
- Ortiz-Avila, C. Y., Squattrito, P. J., Shieh, M., & Clearfield, A. (1989). Inorg. Chem. 28, 2608–2615.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.